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Abstract In this paper, we presented a modified SQP-filter method based on the modified
quadratic subproblem proposed by Zhou (J. Global Optim. 11, 193–2005, 1997). In contrast
with the SQP methods, each iteration this algorithm only needs to solve one quadratic pro-
gramming subproblems and it is always feasible. Moreover, it has no demand on the initial
point. With the filter technique, the algorithm shows good numerical results. Under some
conditions, the globally and superlinearly convergent properties are given.

Keywords Constrained optimization · KKT point · Sequential quadratic programming ·
Global convergence · Superlinear convergence

1 Introduction

In this paper, we consider the following nonlinear inequality constrained optimization prob-
lem:

(P) min f (x)

s.t. g j (x) ≤ 0, j ∈ I = {1, 2, · · · , m} (1)

where x ∈ Rn, f : Rn → R and g j ( j ∈ I ) : Rn → R are assumed to be twice continuously
differentiable.

There are many practical methods for solving problem (P). For example, trust region
methods, gradient projection approaches, QP-free methods [16] and so on [4]. Among these
methods, as we all know, the sequential quadratic programming(SQP) method is one of the
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most efficient methods to solve problem (P). Because its superlinear convergence rate, it has
been widely studied [1,2,5,9,11,12,15].

The SQP method generates a sequence {xk} converging to the desired solution by solving
the following quadratic programming subproblem

min ∇ f (xk)
T d + 1

2
dT Hkd

s.t. g j (xk) + ∇g j (xk)
T d ≤ 0, j ∈ I = {1, 2, · · · , m} (2)

where Hk ∈ Rn×n is a symmetric positive definite matrix.
The SQP algorithms have two serious shortcomings. First, in order to obtain a search

direction, one must solve one or more quadratic programming subproblems per iteration,
and the computation amount of this type is very large. Second, the SQP algorithms require
that the related quadratic programming subproblems to be solvable per iteration, but it is
difficult to be satisfied. Moreover, the solutions of the sequential quadratic subproblem may
be unbounded, which leads to the sequence generated by the method is divergence.

Based on the above reasons, Burke and Han [3], Zhou [14], and Zhang and Zhang [13]
modified the quadratic subproblem respectively to ensure that their methods are globally
convergent. However, Burke and Han’s method is only a conceptual method and can not
be implementable practically. Zhou’s method is based on the exact linear search. Zhang’s
method focus on the inexact line search, but there is much difficult to choose the penalty
parameter in penalty function, which is used as a merit function. For this case, we adopt the
filter technique, which is proposed by Fletcher and Leyffer [6] in 2002. After that, Fletcher et
al. [7,8] combined this method with SQP, then get the global convergence. Without penalty
function, filter methods have several advantages over penalty function methods. A penalty
parameter estimate, which could be problematic to obtain, is not required.

Our idea is to combine the subproblem proposed in [14] and filter technique. The algorithm
proposed in this paper has the following merits: it requires to solve only one QP subproblem
with only a subset of the constraints which are estimate as active, the initial point is arbi-
trary, the subproblem is feasible at each iterate point, and need not to consider the penalty
parameter. In the end, under mild conditions, its global convergence and local superlinear
convergence are obtained.

This paper is organized as follows. In Sect. 2, we review some definitions and preliminary
results that will be used in the latter sections. Section 3 introduces the algorithm. The global
convergence theory for the method is presented in Sect. 4. In Sect. 5, we study the local
superlinear convergence of the proposed algorithm. Some numerical examples are given in
the last section.

The symbols we use in this paper are standard. For convenience, we list some of them as
follows:

(1) f
′
(x, d) = lim

λ↓0
( f (x + λd) − f (x))/λ;

(2) g
′
(x) is Frechet derivative of g at x ;

(3) ‖x‖∞ = max{|x j |, j = 1, 2, · · · , n};
(4) I = {1, 2, · · · , m}.

2 Preliminaries

In this section, we recall some definitions and preliminary results about the filter algorithm,
which will be use in the sequent analysis.
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2.1 Signs and lemmas

Define function �(x),�(x) by

�(x) = max{0, g j (x) : j ∈ I } (3)

�(x) = max{g j (x) : j ∈ I } (4)

For ∀x, d ∈ Rn , let �∗(x; d) be the first order approximation to �(x + d), namely

�∗(x; d) = max{g j (x) + ∇g j (x)T d : j ∈ I } (5)

For ∀σ > 0, function �(x, σ ),�0(x, σ ) : Rn × R+ → R are defined as follows:

�(x, σ ) = min{�∗(x; d) : ‖d‖ ≤ σ } (6)

�0(x, σ ) = max{�(x, σ ), 0} (7)

Remark (6) equals to the following linear programming:

L P(x, σ ) : min{z : g j (x) + ∇g j (x)T d ≤ z, j ∈ I, ‖d‖ ≤ σ } (8)

Denote

θ(x, σ ) = �(x, σ ) − �(x) (9)

θ0(x, σ ) = �0(x, σ ) − �(x) (10)

F = {x : g j (x) ≤ 0 j ∈ I } = {x : �(x) ≤ 0} (11)

Fc = {x : �(x) > 0} (12)

Definition 1 [3] Mangasarian-Fromotz constraint qualification (MFCQ) is said to be satis-
fied by g(x) ≤ 0 at x if ∃z ∈ Rn such that

∇g j (x)T z < 0 ∀ j ∈ { j ∈ I |g j (x) ≥ 0}
Lemma 1 [14] ∀x ∈ Fc, if MFCQ is satisfied at x, then θ(x, σ ) < 0 (∀σ > 0).

Lemma 2 [14] �(x, σ ),�0(x, σ ), θ(x, σ ), θ0(x, σ ) are all continuous on Rn × R+.

Lemma 3 [14] ∀x ∈ Fc, if θ(x, σ ) < 0, then θ0(x, σ ) < 0.

2.2 The notion of a filter

To avoid using the classical merit function with penalty term, in which the penalty parameter
is difficult to obtain, we adopt the filter technique, which is proposed by Fletcher and Leyffer
[6]. The acceptability of steps is determined by comparing the constraint violation and objec-
tive function value with previous iterates collected in a filter. The new iterate is acceptable
for the filter if either feasibility or the objective function value is sufficiently improved in
comparison to all iterates bookmarked in the current filter. The promising numerical results
lead to a growing interest in filter methods in recent years.

Define the violation function h(x) by

h(x) = ‖g(x)+‖∞ (13)
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where g(x)+ = max{0, g j (x) : j ∈ I }
It is easy to see that h(x) = 0 if and only if x is a feasible point. So, a trial step should

reduce either the constraint value h or the function value f . To ensure sufficient decrease of
at least one of the two criteria, we say that a point x1 dominates a point x2 whenever

h(x1) ≤ h(x2) and f (x1) ≤ f (x2) (14)

All we need to do is to remember iterates that are not dominated by any other iterates
using a structure called a filter. A filter is a list F of pairs of the form (hi , fi ) such that either

h(xi ) ≤ h(x j ) or f (xi ) ≤ f (x j ) (15)

for i 
= j . We thus aim to accept a new iterate xi only if it is not dominated by any other
iterates in the filter.

In practical computation, we do not wish to accept xk + dk if its (h, f )-pair is arbitrarily
close to that of xk or that of a point already in the filter. Thus we set a small “margin” around
the border of the dominate point of the (h, f ) space in which we shall also reject trial points.
Formally, we say that a point x is acceptable for the filter if and only if

h(x) ≤ (1 − γ )h j or f (x) ≤ f j − γ h j (16)

for all (h j , f j ) ∈ F , where γ is close to zero. So, there is negligible difference in practice
between (16) and (15). As the algorithm progresses, we may want to add a (h, f )-pair to the
filter. If xk + dk is acceptable for F , then xk+1 = xk + dk , and

Dk+1 = {(h j , f j )|h j ≥ hk and f j − γ h j ≥ fk − γ hk, ∀(h j , f j ) ∈ F}
Filter set is update as the following rule

(Fk+1) Fk+1 = Fk

⋃
{(hk+1, fk+1)} \ Dk+1 (17)

We also refer to this operation as “adding xk +dk to the filter”, although, strictly speaking,
it is the (h, f )-pair which is added.

We note that if a point xk is in the filter or is acceptable for the filter, then any other point
x such that

h(x) ≤ (1 − γ )hk and f (x) ≤ fk − γ hk (18)

is also acceptable for the filter and xk .

3 Description of the algorithm

Given x ∈ Rn, σ > 0. D(x, σ ) is defined as the following set

D(x, σ ) = {d|g j (x) + ∇g j (x)T d ≤ �0(x, σ ), j ∈ I }
If d∗ is the solution of L P(x, σ ), the d∗ ∈ D(x, σ ), hence D(x, σ ) is nonempty. The qua-
dratic subproblem (2) is replaced by the following convex programming problem

Q(xk, Hk, σk) : min ∇ f (xk)
T d + 1

2
dT Hkd

s.t. g j (xk) + ∇g j (xk)
T d ≤ �0(xk, σk) j ∈ Lk (19)

where Lk is the set of approximate active indices of the point xk . Clearly, by the above state-
ment, the convex programming Q(xk, Hk, σk) is feasible. If Hk is positive definite, then the
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solution of Q(xk, Hk, σk) is unique. The convex programming problem has the following
properties:

Theorem 1 [14] Suppose that xk ∈ Rn, Hk ∈ Rn×n is a symmetric positive definite matrix.
If MFCQ is satisfied at xk , then

(1) The convex programming problem Q(xk, Hk, σk) has a unique solution dk which
satisfies KKT conditions, i.e. there exist vectors U k = (uk

j j ∈ Lk) such that

(a) g j (xk) + ∇g j (xk)
T dk ≤ �0(xk, σk) j ∈ Lk;

(b) uk
j ≥ 0 j ∈ Lk;

(c) ∇ f (xk) + Hkdk + AkU k = 0, Ak = (∇g j (xk) j ∈ Lk);
(d) uk

j (g j (xk) + ∇g j (xk)
T dk) = 0 j ∈ Lk;

(2) If dk = 0 is the solution of Q(xk, Hk, σk), then xk is a KKT point of problem (P).

Lemma 4 ∀x ∈ F, d ∈ D(x, σ ), then �∗(x; d) = 0
Now, the algorithm for the solution of problem (P) can be stated as follows.

Algorithm A
Step 0: Initialization:
Given x0 ∈ Rn , � is a compact set which consists of symmetric positive definite matrices.

H0 ∈ �, k = 0, ε0 > 0, σr > σl > 0, σ0 ∈ [σl , σr ], C > 0, η, α1, α2 ∈ (0, 1), initial filter
set F0;

Step 1: Computation of an ‘active’ constraint set Lk :
S1.1 Let i = 0, εk,i = ε0;
S1.2 Set

Lk,i = { j ∈ I | − εk,i ≤ g j (xk) − �(xk) ≤ 0}

Ak,i = (∇g j (xk) j ∈ Lk,i )

If det (AT
k,i Ak,i ) ≥ εk,i , let Lk = Lk,i , Ak = Ak,i , ik = i , go to step 2;

S1.3 Set i = i + 1, εk,i = εk,i−1/2, and go to S1.2 (inner loop A);
Step 2: Computation of the direction dk : Compute �(x, σ ),�0(x, σ ),let dk be the solu-

tion of convex programming problem Q(xk, Hk, σk). If dk = 0, then xk is a KKT point of
problem (P). If ‖dk‖ ≥ C , go to Step 4;

Step 3: Test to accept the trial step:
If xk + dk is not acceptable for the filter.

If hk > ‖dk‖{η, α1‖dk‖α2}, call Restoration Algorithm (Algorithm B) to obtain xr
k =

xk + sr
k , and go to Step 2. Otherwise go to Step 4.

If xk + dk is acceptable for the filter, let xk+1 = xk + dk and add xk+1 to the filter, go to
Step 8;

Step 4: Computation of the direction qk :
Let A1

k be the matrix whose rows are |Lk | linearly independent rows of Ak , and A2
k be the

matrix whose rows are the remaining n − |Lk | rows of Ak . We might denote Ak =
(

A1
k

A2
k

)
.

Like Ak , we might as well let ∇ f (xk) =
(∇ f1(xk)

∇ f2(xk)

)
. Compute

ρk = −∇ f (xk)
T dk, πk = −(A1

k)
−1∇ f1(xk),

d̃k = −ρk((A1
k)

−1)T e
1 + 2|eT πk | , qk = ρk(dk + d̄k) (20)
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where d̄k =
(

d̃k

0

)
, e = (1, 1, · · · , 1)T ∈ R|Lk |;

Step 5: αk,0 = 1, l = 0;
Step 6: If xk + αk,lqk is not acceptable for the filter, the go to Step 7. Otherwise let

αk = αk,l , xk+1 = xk + αkqk and add xk+1 to the filter, go to Step 8;
Step 7: αk,l+1 = αk,l/2, l = l + 1, go to Step 6 (inner loop B);
Step 8: Update:
Choose Hk+1 ∈ ∑

, σk+1 ∈ [σl , σr ], k = k + 1. If hk > ‖dk‖{η, α1‖dk‖α2}, call Res-
toration Algorithm (Algorithm B) to obtain xr

k = xk + sr
k , and go to Step 2. Or else, go to

Step 1.

Remark (1) Hk+1 can be obtained by iterative formula.
(2) Whether in Zhou’s or in Zhang’s algorithm, the penalty function is needed. In this

paper, the penalty function is substituted by filter, which avoid the penalty parameter esti-
mate. Practical experience shows that they exhibit a certain degree of nonmonotonicity which
can be beneficial.

(3) When the solution of (19) is unacceptable, it generates a revised direction by solving
a system of linear equation, which takes full advantage of good property of d .

If hk > ‖dk‖{η, α1‖dk‖α2}, we give the restoration algorithm (Algorithm B) to compute
the xr

k such that h(xr
k ) ≤ η min{hI

k , α1‖dk‖θ }, where 2 < θ ≤ 3, hI
k = min{hi |hi > 0,

(hi , fi ) ∈ F}.
In a restoration algorithm, it is therefore desired to decrease the value of h(x). The direct

way is utilized Newton method or the similar ways to attack g(x + s)+ = 0. We now give
the restoration algorithm.

Algorithm B
Step 1: Let x0

k = xk,

0
k = σk, j = 0, η, η̄ ∈ (0, 1), 2 < θ ≤ 3;

Step 2: If h(x j
k ) ≤ η{hI

k , α1‖dk‖θ }, then let xr
k = x j

k and stop;
Step 3: Compute

min h(x j
k ) − ‖(g j

k + A j
k d)+‖∞

s.t. ‖dk‖ ≤ 

j
k (21)

to get s j
k . Let r j

k = h(x j
k ) − h(x j

k + d)

h(x j
k ) − ‖(g j

k + A j
k d)+‖∞

;

Step 4: If r j
k ≤ η̄, then let x j+1

k = x j
k ,


j+1
k = 1

2

j
k , j = j + 1 and go to step 3.

Otherwise, let x j+1
k = x j

k + s j
k ,


j+1
k = 2


j
k , get A j+1

k , j = j + 1 and go to step 2.

The above restoration algorithm is a Newton method for g(x)+ = 0. This method is
utilized frequently [10]. Of course, there are other restoration algorithms, such as interior
point restoration algorithm, SLP restoration algorithm and so on.

4 Global convergence of algorithm

In the sequential analysis, we always assume that following conditions hold.
Assumptions

A1 The objective function f and the constraint functions g j ( j ∈ I ) are twice continu-
ously differentiable.
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A2 For any x ∈ Rn , the vectors {∇g j (x), j ∈ I (x)} are linearly independent, where
I (x) = { j ∈ I |g j (x) = �(x)}.

A3 The iterate {xk} remain in a closed, bounded convex subsets S ⊂ Rn .
A4 When solving (21), we have h(x j

k ) − ‖(g(x j
k ) + A j

k d)+‖ ≥ β min{h(x j
k ),


j
k } where

β > 0 is a constant.
A5 There exist two constants 0 < a ≤ b such that a‖d‖2 ≤ dT Hkd ≤ b‖d‖2, for all k,

for all d ∈ Rn .

(A1) and (A3) are the standard assumptions. (A2) is necessary for the following Lemma
5. (A4) is the sufficient reduction condition and it is every moderate.

Without loss of generality, we may assume that there exists M > 0 such that ‖xk‖ ≤ M .
From Theorem 1, we also can assume that ‖U k‖ ≤ M . A important consequence of the
assumption A1 and A3 is that they together directly ensure that for all k, it holds

0 < hk ≤ hmax and fmin ≤ fk (22)

for some constants fmin, hmax > 0. Thus the part of the (h, f ) space in which the (h, f )-pairs
associated with the filter iterates lie is restricted to the rectangle

A0 = [0, hmax] × [ fmin,∞] (23)

Before we show the global convergence of Algorithm A, we must to ensure the algorithm
is implementable.

Lemma 5 For any iterate k, the index ik defined in step 1 is finite, which means that the
inner loop A terminates in finite number of times.

Proof Suppose by a contradiction that Algorithm A will run infinitely between Step 1.2 and
Step 1.3, so we have

det(AT
k,i Ak,i ) <

1

2i
ε0 (24)

By the definition of Lk,i , we can see that Lk,i+1 ⊆ Lk,i . And there are only finite possible
subsets of I , so we have Lk,i+1 ≡ Lk,i for large enough i . We denote it by L∗

k , now letting
i → ∞, then we obtain

det(AT
L∗

k
AL∗

k
) = 0 and L∗

k = I (xk) (25)

which contradicts the Assumption A2. �

Lemma 6 If dk 
= 0, then it holds

∇ f (xk)
T dk < 0, ∇ f (xk)

T qk ≤ −1

2
ρ2

k < 0

∇g j (xk)
T dk = 0, ∇g j (xk)

T qk ≤ − ρ2
k

1 + 2|eT πk | < 0 (26)

Proof We can see I (xk) ⊆ Lk by the definition of Lk . If dk 
= 0, then by (19), we have

∇ f (xk)
T dk ≤ −1

2
dT

k Hkdk < 0

If xk is not a feasible point, we have ∇g j (xk)
T dk ≤ 0. If xk is a feasible point, then by the

definition of I (xk) and Lemma 1, we have ∇g j (xk)
T dk ≤ 0 j ∈ I (xk).
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In addition, from (20), we obtain

∇ f (xk)
T qk = ρk∇ f (xk)

T (dk + d̄k)

= ρk(∇ f (xk)
T dk + ∇ f (xk)

T d̄k)

= ρk(−ρk + ∇ f1(xk)
T d̃k)

= ρk

(
−ρk + ρkπ

T
k e

1 + 2|eT πk |

)

≤ −1

2
ρ2

k < 0 (27)

Moreover,

AT
k d̄k = (A1

k)
T d̃k = −ρk(A1

k)
T ((A1

k)
−1)T e

1 + 2|eT πk | = − ρke

1 + 2|eT πk |

∇g j (xk)
T qk = ρk(∇g j (xk)

T dk + ∇g j (xk)
T d̄k) ≤ − ρ2

k

1 + 2|eT πk | < 0 j ∈ I (xk)

The claim holds. �

Lemma 7 The inner loop B terminates in finite number of times.

Proof By contradiction, if the conclusion is false, then the Algorithm A will run infinitely
between Step 6 and Step 7, so we have

αk,l → 0 (l → ∞)

and xk + αk,lqk is not acceptable for the filter, we consider it in the following two cases:

Case 1 h(xk) = 0:
By the definition of h(xk), we have

h(xk + αk,lqk) = max{0, g j (xk + αk,lqk)}
= max{0, g j (xk) + αk,l∇g j (xk)

T qk + o(‖αk,lqk‖2)} (28)

From Lemma 6, we have ∇g j (xk)
T qk < 0. Together with αk,l → 0, we obtain that there

must exist a constant β, such that

h(xk + αk,lqk) ≤ max{0, βg j (xk)} = βh(xk)
�= (1 − γ )h(xk) (29)

Moreover, by Lemma 6, ∇ f (xk)
T qk ≤ − 1

2ρ2
k < 0. Then

f (xk + αk,lqk) = f (xk) + αk,l∇ f (xk)
T qk + O(‖αk,lqk‖2) ≤ f (xk) (30)

With (29) and (30), we conclude that xk + αk,lqk must be acceptable for the filter and xk ,
which is a contradiction.

Case 2 h(xk) 
= 0
Similar to Case 1, we can also get the relation

h(xk + αk,lqk) ≤ (1 − γ )h(xk) (31)
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Since xk is acceptable for the filter, we have

hk ≤ (1 − γ )h j or fk ≤ f j − γ h j ∀(h j , f j ) ∈ F (32)

By the assumption, xk + αk,lqk is not acceptable for the filter, so we have

h(xk + αk,lqk) > (1 − γ )h j (33)

and

f (xk + αk,lqk) > f j − γ h j (34)

for the point xk , if it holds that hk ≤ (1 − γ )h j , then by Lemma 6 and αk,l → 0,

h(xk + αk,lqk) = max{0, g j (xk + αk,lqk)}
≤ max{0, g j (xk)} ≤ hk ≤ (1 − γ )h j (35)

which contradicts (33).
If it holds fk ≤ f j − γ h j , then, also by Lemma 6 and αk,l → 0, we get

f (xk + αk,lqk) = f (xk) + αk,l∇ f (xk)
T qk + O(‖αk,lqk‖2) ≤ fk ≤ f j − γ h j (36)

which contradicts (34).

Based on the above analysis, together with Case 1, we can see that the claim holds.
Lemma 7 means that there exists a constant ᾱ > 0, such that αk ≥ ᾱ for large enough k.

�

Lemma 8 The Restoration Algorithm B terminates in a finite number of iteration.

Proof It is similar to Lemma 1 in [10].
By the above statement, we see that Algorithm A is implementable. Now, we turn to prove

the global convergence of Algorithm A. �

Theorem 2 [14]: Assume that the MFCQ is satisfied at x0 ∈ Rn. Let σl > 0 and F =
{x |g(x) ≤ 0}, then there exists a neighbor N (x0) of x0 such that

(1) the MFCQ is satisfied at any point in N (x0);
(2) if x0 ∈ F, then �0(x, σ ) = 0 for all x ∈ N (x0) and σ ≥ σl ;
(3) if x0 ∈ F, then

sup

⎧
⎨

⎩

m∑

j=1

µ j : H ∈ �, x ∈ N (x0), σ ∈ [σl , σr ]
⎫
⎬

⎭ < ∞

where � ⊂ Rn×n is a compact set which consists of symmetric positive definite matrices and
0 < σl < σr .

Lemma 9 Suppose that infinite points are added to the filter, then lim
k→∞,k∈K

hk = 0, where

K is an infinite set.
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Proof If the lemma were not true, there would have an infinite subsequence K1, such that
for ∀k ∈ K1,

hk ≥ ε > 0

At each iteration k, (hk, fk) is added to the filter. By (17), we can deduce that (h, f )-pair be
added to the filter at a large stage within the square

[hk − γ ε, hk] × [ fk − γ ε, fk]
even if (hk, fk) is later removed from the filter. Now observe these squares whose area are
all γ 2ε2. As a consequence, the set [0, hmax] × [ fmin,∞] ∩ {(h, f )| f ≤ κ f } is completely
covered by at most finite number of such squares, for any choice of κ f ≥ fmin. Since
(hk, fk)(k ∈ K1) keep on being added to the filter, this implies that fk tends to infinite when
k tends to infinite. Without loss of generality, we can that fk+1 ≥ fk , for k large enough.
Then,

hk+1 ≤ (1 − γ )hk ≤ hk − γ ε

Therefore, hk → 0(k → ∞), which is a contradiction. The conclusion follows. �

Theorem 3 Suppose the Algorithm A is applied to problem (P), and the Assumption A1–A4
hold. Let {xk} be the sequence of iterates produced by the algorithm. Then there are two
following possible cases:

(A) The iteration terminates at a KKT point;
(B) Any accumulation point of {xk} is a KKT point of problem (P).

Proof (A) It is evident according to the algorithm and Lemma 9 and Theorem 2.
(B) By the construction of Algorithm A, there are two cycles between Step 1 and Step 8,

one generates the sequence {xk} with the form xk+1 = xk + dk , the other generates it with
the form xk+1 = xk + αkqk . We prove that the claim according to the two cycles. �

Case 1 Suppose there are infinite points gotten by the relation xk+1 = xk + dk , by Assump-
tion A3, there must exists a point x∗ such that xk → x∗(k ∈ K ), where K is a infinite
index set. Also, by Lemma 9, h(xk) → 0, (k ∈ K ), that means x∗ is feasible point and
�0(xk, σk) → 0, (k ∈ K ). Suppose x∗ is not a KKT point, let K1 = {k ∈ K |∇ f (xk)

T dk >

− 1
2 dT

k Hkdk} ⊂ K .

(i) K1 is an infinite index set.
If lim

k∈K1,k→∞ ‖dk‖ = 0, then it is easy to see that x∗ is a KKT point. It is a contradiction.

So, without loss of generality, we suppose that ‖dk‖ > ε for k ∈ K1.
By h(xk) → 0 (k ∈ K ) and Assumption A5, we can assume ∃k0, for k > k0, k ∈ K1, it

holds

h(xk) ≤ aε2

2M
≤ a‖dk‖2

2M
≤ dT

k Hkdk

2M
(37)

While by KKT condition of the problem (2) and Theorem 1, we have ∇ f (xk) + Hkdk +
AkUk = 0, Ak = (∇g j (xk), j ∈ Lk). Together with (37), we obtain that for all k ∈ K1, k >

k0, it holds
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∇ f (xk)
T dk = −dT

k Hkdk − dT
k AkU k

= −dT
k Hkdk − (U k)T g(xk)

≤ −dT
k Hkdk + ‖U k‖∞h(xk)

≤ Mh(xk) − dT
k Hkdk

≤ −1

2
dT

k Hkdk (38)

which contradicts the definition of K1.
(ii) K1 is a finite index set.
That means it holds ∇ f (xk)

T dk ≤ − 1
2 dT

k Hkdk for large enough k.
We have

f (xk) − f (xk+1) = −∇ f (xk)
T dk + O(‖dk‖2) ≥ −∇ f (xk)

T dk ≥ 1

2
dT

k Hkdk ≥ a

2
‖dk‖2

Because f is bounded below, for some integer i0, we have

∞ >

∞∑

k=i0

( f (xk) − f (xk+1)) ≥
∞∑

k=i0

a

2
‖dk‖2

Then
∞∑

k=i0

‖dk‖2 < +∞

That means ‖dk‖ → 0. Hence x∗ is a KKT point.

Case 2 Suppose there are infinite points gotten from the relation xk+1 = xk + αkqk :
Suppose also by contradiction that ‖dk‖ > ε, k ∈ K . By Lemma 3, we have αk > ᾱ > 0.

Without loss of generality, we can assume that qk → q∗. Since ‖dk‖ > ε, it easy to see that
∇ f (x∗)T q∗ < 0. By Lemma 2, then

0 = lim
k∈K

( f (xk+1) − f (xk))

= lim
k∈K

(αk∇ f (xk)
T qk + O(‖αkqk‖2))

≤ lim
k∈K

(αk∇ f (xk)
T qk)

≤ ᾱ∇ f (x∗)T q∗ < 0 (39)

which is a contradiction.

Combined Case 1 and Case 2, we can see that the claim holds. �

5 Superlinear convergence of algorithm

In order to study the superlinear convergent property, we need some stronger regularity
assumptions.

Assumptions
B1: Hk → H∗ as k → ∞.
B2: The second-order sufficiently conditions are satisfied at the KKT point x∗ and the

corresponding multiplier vector λ∗, i.e.
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dT ∇2
xx L(x∗, λ∗)d > 0, ∀d ∈ {d|∇g j (x∗)T d = 0, j ∈ I (x∗)}

where L(x, λ) = f (x) +
m∑

j=1
λ j g j (x), I (x∗) = { j |g j (x∗) = 0}.

B3: At x∗, strict complementarity slackness and linear independence of the gradients of
the active constraints hold.

B4: Matrices Hk, k = 1, 2, . . . are symmetric positive definite and satisfy the following
condition

lim
k→∞

‖(Hk − ∇2
xx L(x∗, λ∗))d‖
‖dk‖ = 0

Lemma 10 [13] Sequence {xk} converges to the solution x∗ of problem (P).

From Theorem 3 and Lemma 9, we know that ‖dk‖ → 0. So, it is natural that ‖dk‖
satisfies ‖dk‖ ≤ σk for k sufficiently large. Lemma 8 implies that �0(xk, σk) = 0 when
k is large enough. So the sequence Q(xk, Hk, σk) is equivalent to the following quadratic
programming subproblem when k is sufficiently large.

min ∇ f (xk)
T d + 1

2
dT Hkd

s.t. g j (xk) + ∇g j (xk)
T d ≤ 0 j ∈ Lk (40)

Lemma 11 It holds, for k → ∞, that

Lk ≡ I (x∗) = I∗, dk → 0, λk → (λ∗
j , j ∈ I∗), U k → λ∗

where (dk, λk) is the KKT pair of the above quadratic programming subproblem.

Proof By the statements above and Lemma 9, Hk → H∗, it holds that dk → 0 as k → ∞.
According to Lemma 5 and xk → x∗, it follows that I∗ ⊂ L ≡ Lk .

First, we prove that

λk → (λ∗
j , j ∈ L)

Since x∗ is a KKT point of problem (P), we have

∇ f (x∗) + A∗λ∗
L = 0, λ∗

L ≥ 0, λ∗
j = 0 j ∈ I \ L

where λ∗
L = (λ∗

j , j ∈ L), A∗ = (∇g j (x∗), j ∈ L).
From Lemma 5 and xk → x∗, it following that

AT∗ A∗ is nonsingular, and (AT
k Ak)

−1 → (AT∗ A∗)−1

So λ∗
L = −(AT∗ A∗)−1 AT∗ ∇ f (x∗)

Moreover, by KKT condition of problem (2), we have

∇ f (xk) + Hkdk + Akλk = 0

Hence, λk = −(AT
k Ak)

−1 AT
k (∇ f (xk) + Hkdk) → −(AT∗ A∗)−1 AT∗ ∇ f (x∗) = λ∗

L .
While, it is easy to see that U k → λ∗.
Second, we prove that L ⊂ I∗.
For j0 /∈ L , if j0 /∈ I∗ by contradiction, there must be a constant ξ0 > 0 such that

g j0(x∗) ≤ −ξ0 < 0. Again, since g j0(x) is continuously differentiable, and dk → 0 (k →
∞), we have for k large enough

g j0(x∗) + ∇g j0(x∗)T dk ≤ −ξ0

2
< 0
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which means j0 /∈ L , contradicts the above assumption. Hence L ≡ Lk ≡ I∗. �

Lemma 12 Suppose Assumption A1–A5, B1–B4 hold, then xk+1 = xk +dk for k sufficiently
large.

Proof Suppose xk is acceptable for the filter, we will show that for k sufficiently large, xk +dk

is acceptable for the filter.
From Lemma 9 and Lemma 11, we know that dk → 0, hk → 0 as k → ∞. Also, by the

construction of Algorithm A, we have h(xk + dk) = o(‖dk‖2). So, we just need to show that
f (xk + dk) ≤ f (xk) + γ h(xk). Let sk = f (xk + dk) − f (xk) − γ h(xk), we have

sk = ∇ f (xk)
T dk + 1

2
dT

k ∇2 f (xk)dk + o(‖dk‖2)

While by the KKT condition of the problem (2) and hk → 0, we have

∇ f (xk)
T dk = −dT

k Hkdk −
m∑

j=1

uk
j∇g j (xk)

T dk

g j (xk) + ∇g j (xk)
T dk + 1

2
dT

k ∇2g j (xk)dk = o(‖dk‖2)

Then it holds

sk = −dT
k Hkdk +

m∑

j=1

uk
j g j (xk) + 1

2
dT

k ∇2 L(xk, U k)dk + o(‖dk‖2)

= −1

2
dT

k Hkdk +
m∑

j=1

uk
j g j (xk) + 1

2
dT

k (∇2 L(xk, U k) − Hk)dk + o(‖dk‖2) (41)

According to uk
j → λ∗

j > 0, g j (xk) → g j (x∗) < 0, j ∈ I∗ and Assumption A5, we have

sk ≤ −a

2
‖dk‖2 + 1

2
dT

k (∇2
xx L(xk, U k) − ∇2

xx L(x∗, λ∗))dk

+1

2
dT

k (∇2
xx L(x∗, λ∗) − Hk)dk + o(‖dk‖2) (42)

Since xk → x∗, U k → λ∗ and Assumption A3, then

dT
k (∇2

xx L(xk, U k) − ∇2
xx L(x∗, λ∗))dk = o(‖dk‖2)

Assumption B4 implies that

dT
k (∇2

xx L(x∗, λ∗) − Hk)dk = o(‖dk‖2)

Therefore, when k is sufficiently large, it holds

sk ≤ −a

2
‖dk‖2 + o(‖dk‖2) ≤ 0

Hence, for all k large enough, xk + dk is acceptable for the filter.
In view of Lemma 12 and the way of Theorem 5.2 in [5], it is easy to get the convergence

theorem as follows. �

Theorem 4 Under all stated assumptions, the algorithm is superlinear convergent, i.e. the
sequence {xk} generated by the algorithm satisfies ‖xk+1 − x∗‖ = o(‖xk − x∗‖).
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6 Numerical experiments

In this section, we give some numerical experiments to show the success of proposed method.
(1) Updating of Hk is done by

Hk+1 =
⎧
⎨

⎩

Hk if sT
k yk ≤ 0

Hk + yT
k yk

yT
k sk

− HksksT
k Hk

sT
k Hksk

if sT
k yk > 0

(43)

(2) The stop criteria is ‖dk‖ sufficiently small.
(3) If an equality constraint h(x) = 0 exists in the original problem, it is most easily

handle as two corresponding inequalities h(x) ≤ 0 and h(x) ≥ 0, and we can apply the
above algorithm.

(4) The algorithm parameters were set as follows: σl = 1, σr = 2, γ = 0.1, H0 = I ∈
Rn×n . The program is written in Matlab.

Example 1

min f (x) = x − 1

2
+ 1

2
cos2(x)

s.t. x ≥ 0

x0 = 2, x∗ = 0, f (x∗) = 0, iterate = 2.

Example 2

min f (x) = x2
1 + x2

2 + x2
3 + x2

4

s.t. 6 − x2
1 − x2

2 − x2
3 − x2

4 ≤ 0

x0 = (2, 2, 2, 2)T , x∗ = (1.2247, 1.2247, 1.2247, 1.2247)T , f (x∗) = 6, iterate = 5.

Example 3

min f (x) =
3∑

i=1

x2
i x2

i+1 + x1x4

s.t. 4 −
4∑

i=1

xi ≤ 0

1 −
4∑

i=1

(−1)i+1xi ≤ 0

x0 =(2.5, 1.5, 0, 0)T, x∗ =(1.2400, 0.7533, 1.2600, 0.7467)T, f (x∗) = 3.5844, iterate = 6.

Example 4

min f (x) = 4

3
(x2

1 − x1x2 + x2
2 )

3
4 − x3

s.t. x ≥ 0

x3 ≤ 2

x0 = (0, 0.25, 0)T , x∗ = (0, 0, 2)T , f (x∗) = −2, iterate = 7.
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Comparing with the results in [13] and [14], the computation in this paper is less than that
method in [13] and [14]. So, the algorithm is effective.
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